

Journey Overview

Understanding the Climate Risks

- Planning for Change
 - Strategy Development
 - Actions
 - Strategic Directions
 - Key Outcomes
- Funding and Partnerships
- Implementation Highlights
- Lessons Learned
- Questions

Poll Question

How important is climate change in your work?

(1 – Extremely important, 5 – Not at all important)

- 1 Extremely important
- 2
- 3
- 4
- 5 Not at all important

Poll Question

Rank your top barriers to climate adaptation from the list below:

- Resources
- Political
- Technical Complexity

Adaptation Strategy Process

Worked with *ICLEI* and six other municipalities using the BARC approach

2013 - present

- Top 10 Actions
- Risk Management
 Framework
- Adaptation Advisory Team

Assessing Climate Risk in Surrey

- 18 impact statements developed describing key ways
 Surrey would be affected by projected climatic changes
- High-level vulnerability and risk assessment conducted for each impact statement to prioritize City efforts
- > 30 staff from departments citywide participated to create risk ratings

Climate Change Planning - Floods

Priority Action:

"Conduct detailed analysis on Surrey-specific climate impacts, including timelines and extent of sea level rise and its related effects on flood construction levels and floodplain designations"

Poll Question

Is climate change an emergency in British Columbia?

- Yes
- No

What are we seeing?

December 20, 2018 high wind event

Existing Infrastructure Video

Surrey Coastal Flood Adaptation Strategy (CFAS)

- Climate Adaptation Strategy adopted November 2013
- Council adopted recommendation to develop a coastal flooding strategy in 2016
- Three-year project recently completed!

The Purpose of CFAS

San Juan Islands (WA) Gulf Islands (BC) Point Roberts (WA) Crescent Beach To prepare for a changing climate and increase resilience of our coastal communities

COMMUNITIES AND PEOPLE

- Many residential areas and neighbourhoods
- · Semiahmoo First Nation
- 2,500+ residents
- Approximately 20% of Surrey's land area

PARKS AND ENVIRONMENT

- Destination regional and City parks
- Beaches and recreation areas
- Critical foreshore, coastal, and riparian areas

LOCAL AND REGIONAL ECONOMY

- Over \$100M in annual farm gate revenue
- Over \$1B in assessed property value
- Almost \$25B annual truck and rail freight traffic

INFRASTRUCTURE

- Over 10km of Provincial Highways
- Over 200,000 vehicle trips a day
- · Over 30km of railway (freight, passenger)
- · Critical power, gas, water and sewer lines

FOOD SECURITY

- ~60km² agricultural land
- ~10% of Metro Vancouver's farmland

CFAS Overview

PHASE 1

What matters most and who is affected?

FOCUS: Education, awareness building, and community values

SUMMER 2016 - SPRING 2017

PHASE 2

What can we do?

FOCUS: Exploring adaptation options

→ SUMMER 2017 - FALL 2017 -

PHASE 3

What is acceptable?

FOCUS: Developing adaptation strategies

→ FALL 2017 - SPRING 2018

PHASE 4

How will we do it?

PHASE 5
Reporting back

FOCUS: Detailing preferred strategies

/* WINTER 2018 - SPRING 2019 -

SPRING 2019 - FALL 2019

Approach & Process

Participatory
Values-based
Iterative

First Nation

FOCUS GROUPS (Agriculture & Farming,

Community & Residential, **Environment & Recreation)**

60+ participants

Site tour and "walk-shops" around the CFAS study area

70+ participants

WORKSHEETS

COMPLETED

At various engagement

events and workshops

CFAS DOOR HANGERS

SURREY YOUTH ENGAGED

5 sessions with high school students, 2 youth events at City Hall, and 80 CFAS postcards completed by elementary school students

#SurreyCoastal mentions), Facebook (100+ CFAS

comments), LinkedIn, YouTube (1,000+ hours of CFAS video views), CFAS website and StoryMaps (10,000+ views)

TECHNICAL WORKSHOPS

2 Greenshores™ Shoreline Design workshops, 2 PIEVC™ infrastructure operators workshops, 2 Design workshops with Dutch engineering design experts and UBC researchers. Coastal regulators, Coastal stewards

> PROJECT STAKEHOLDERS. PARTNERS, CONTRIBUTORS

> > CFAS ADVISORY GROUP

INFORMATIO

CFAS ADVISORY GROUP WORKSHOPS

With project stakeholders and partners, including local governments, infrastructure operators, provincial agencies, organizations, residents and farmers

CRESCENT BEACH

COMMUNITY WORKSHOPS

140+ attendees

POP-UP PROJECT

OUTREACH STATIONS Crescent Beach, Blackie Spit, SFU Surrey, Surrey Centre/Ocean Park/ Semiahmoo Public Libraries, Surrey City Hall, Alexandra House (Crescent Beach)

engaging residents, business

owners, and other stakeholders

COMMUNITY CONVERSATIONS

at Crescent Beach pop-up event hosted with 40+ University of the Fraser Valley Geography and Environment students

#SURREYCOASTAI PHOTO CONTEST

200+ submissions on Facebook, Twitter, and Instagram with winners in three categories

Completed online, at CFAS workshops, at community events, and by CitySpeaks Members

Engagement Highlights

- 2,000+ directly engaged
- 8 pop-up events
- 2 bus tours
- 200+ students (elementary & high school)
- 30+ organizations involved
- **Advisory Group** representing wide range of organizations, agencies, and governments
- 3 surveys, including technical options review
- **Engaging and** partnering with local expertise and capacity – UBC, SFU, UFV

COMMUNITY MEMBERS directly involved to date

ORGANIZATIONS, AGENCIES, LOCAL GOVERNMENT PARTNERS, CITY OF SURREY COMMITTEES, AND COMMUNITY GROUPS INVOLVED

Poll Question

By comparison to other issues coastal communities are facing, how important is the issue of sea level rise and coastal flooding compared to other issues?

(1 – Extremely important, 5 – Not at all important)

- 1 Much more important
- 2 Somewhat more important
- 3 Equally important
- 4 Somewhat less important
- 5 Not at all important
- I don't know / not sure

Engagement Results

Flood Adaptation Approaches

Flood Adaptation Approaches

COMBINATION

Draft Adaptation Options

Values-based

Minimize people displaced

AGRICULTURE:

Reduce permanent loss of agricultural land

Minimize impacts to wetland habitats and riparian areas

ECONOMY:

Minimize loss of local businesses

RECREATION:

Maximize recreational opportunities

CULTURE:

Maximize opportunities for traditional practices

Values Ranking:

Technical Review

FLOOD DAMAGE PREVENTION:

How well would the option reduce or prevent flood damage from sea *level rise and storm surges?*

OUTCOME OF A FAILURF:

If the option failed, what would the consequences be to people, infrastructure and the environment?

GEOTECHNICAL STABILITY:

How effective would the option be at withstanding hazard events given the soil's stability?

ADAPTABILITY OVER TIME:

How well can the option be adjusted or phased to changing sea level rise?

CAPITAL COST:

What are the capital costs for the *City of implementing the option?*

What are the operation and maintenance costs for the City of implementing the option?

Technical Ranking:

VERY POOR

POOR LIMITED GOOD

VERY GOOD

Capital Costs:

\$ = <100M \$\$ = 100M - 1B\$\$\$ = 1B+

FLOOD DAMAGE PREVENTION

OUTCOME OF A FAILURE

GEOTECHNICAL STABILITY

ADAPTABILITY OVER TIME

CAPITAL COST CoS

O&M COST CoS

SHORTLISTED OPTIONS - MUD BAY

MORE THAN \$100M

The summary table compares the short-listed options for the Mud Bay study area. The overview includes a "Baseline" or "No Adaptation" option for reference. Full descriptions of the short-listed options are available in the Primer (Primer Part II: Options) and at the video station.

(\$) CAPITAL COST

OPERATION & MAINTENANCE COST

1 OTHER INFRASTRUCTURE COST

U FUTURE ADAPTATION COST

MORE THAN \$10M

MORE THAN \$100M

\$1B - \$4B

		BASELINE - NO ADAPTATION	CURRENT CONVENTIONS	MUD BAY BARRIER	HIGHWAY 99 REALIGNMENT	MANAGED RETREAT		
VALUES C	VALUES CRITERIA							
	RESIDENTS People permanently displaced	FAR WORSE				FAR WORSE		
5	AGRICULTURE Permanent loss of agriculture land	FAR WORSE	SLIGHTLY WORSE	NO CHANGE	SLIGHTLY WORSE	FAR WORSE		
	ENVIRONMENT Impacts to wetland habitats, freshwater fish habitat & riparian areas	MODERATELY WORSE	FAR WORSE	FAR WORSE		FAR BETTER		
	INFRASTRUCTURE Percent of service/transportation infrastructure made vulnerable	FAR WORSE	NO CHANGE	NO CHANGE	NO CHANGE			
9	ECONOMY Revenue	FAR WORSE	SLIGHTLY WORSE		SLIGHTLY WORSE	MODERATELY WORSE		
	RECREATION Diversity of recreational opportunities	FAR WORSE	NO CHANGE	SLIGHTLY WORSE				
	CULTURE Opportunities for traditional practices	SLIGHTLY WORSE	NO CHANGE	MODERATELY WORSE	NO CHANGE			
IMPACT 8	IMPACT & RISK OF FAILURE							
X	OVERALL RISK	VERY HIGH	VERY HIGH	VERY HIGH		VERY LOW		
COST CRE	TERIA .							

RISK ASSESSMENT HEAT MAP -----

MORE THAN \$10M

\$1B - \$4B

MORE THAN \$4B

\$1B - \$4B

\$1B - \$4B

		IMPACT					
		Very Low	Low	Medium	High	Very High	
ПКЕЦНООВ	Very High				CURRENT CONVENTIONS		
	High					MUD BAY BARRIER	
	Medium			HIGHWAY 99 REALIGNMENT			
	Low						
	Very Low		MANAGED RETREAT				

Poll Question

How does infrastructure that incorporates resilience to climate change compare to regular infrastructure?

- Materially different throughout the asset's life
- Initially the same, then becomes different as it adapts over the asset's life
- Substantially the same throughout the asset's life
- Identical throughout the asset's life
- It depends

PIEVCTM Vulnerability Assessment

Workshop 1: March 28, 2017

- Infrastructure operators, owners & emergency service providers
- 66 participants from 28 organizations
- Utilizing the PIEVC Protocol
 Developed by Engineers Canada and heavily used by Ministry of Transportation and Infrastructure
- Systematically assess current and future coastal flooding risks for individual assets
- Identify issues, concerns and potential vulnerabilities of infrastructure assets

Organizing Committee

Flood Risk	Coastal Flood with Dyke Breach Current	Coastal Flood with Dyke Breach 2100			
Low	20	6			
Medium	21	15			
High	2	22			

PIEVCTM Adaptation Approaches

With funding support from FCM

Workshop 2: October 10, 2017

- Impacts of selected CFAS adaptation options on key infrastructure assets and land-use
- Utilizing the PIEVC Protocol triple bottom line (TBL) decision-making module
- Optional pre-workshop study tour

Triple bottom line analysis

Environmental

Social

Economic

Asset Risk Assessment Findings & Feedback

Cost-sharing and collaboration is a high priority

- Aim to seek co-benefits
- Regional and interjurisdictional coordination is needed
- Flood and transportation infrastructure are heavily interconnected

Opportunities for improvement

- Capital renewal creates opportunities for adaptation
- Consider overall resilience of solutions to multiple hazards
- Key infrastructure assets are adaptable
- Infrastructure owners are mostly **reactive** without specific adaptation plans at the moment

Shared utility corridors

- Reduce **costs**
- Can increase **risk**

CFAS Actions

Program & Policy Actions

		2020-30	2030-40	2040-50	2050-60	2060-70	2070-80	2080-90	2090-2100
Ongo	oing Education, Communications, and Adv	ocacy Initia	tives						
1	CFAS Steering Committee								
2	Internal Updates								
3	CFAS Advisory Group								
4	CFAS Website								
5	Advocacy Partners Workshop								
6	Communications and Media								
Deta	iled Planning, Studies, and Data Collectio	n							
7	Update hazard bibliography								
8	Update coastal flood hazard assess- ment								
9	Detailed studies - Strategic Actions								
Regu	ılatory Controls, Design Standards, and Gu	iidelines							
10	Review Development Variance prac- tices								
11	Support flood resilient design and construction								
12	Explore Sea Level Rise Planning Area								
13	Design Standards Guidebook				-40				
Extr	eme Flood Management								
14	Hazard review								
15	Training and readiness								
16	Improve flood warning systems and communications								
17	Temporary protection measures assessment								
18	Build Back Better program								

CFAS Actions

Planning Area-Specific Actions

Votes: ✓ indicates that the project scope is included in Surrey DMAF program and has confirmed funding. See Appendix II for a summary. Planning Area-Specific Actions under SSM capital cost are omitted for clarity.

Long-term Strategic Directions (Year 2100)

Mud Bay Crescent Beach Semiahmoo Bay YEAR 2100 YEAR 2100 YEAR 2100 Note adjoined by the companied of the second of the sec

Outcomes of CFAS

- Increased awareness of the impacts of sea level rise
- Stakeholder buy-in
- Partnerships
- High level actions to advance long term strategic directions
- Community Energy Association's Climate Adaptation Award
- Funding commitments for implementation of capital works

Building Partnerships

THE UNIVERSITY OF BRITISH COLUMBIA

Climate Action Initiative

Friends of Semiahmoo Bay Society

FOR BRITISH COLUMBIA

\$449,125 grant funding approved

Disaster Mitigation Adaptation Fund (DMAF)

- 13 projects valued at \$187 million, implementing short-term CFAS actions that are required no matter what long-term adaptation direction is chosen
- Government of Canada investment of over \$76 million
- Projects make smart investments in the protection of residential neighbourhoods, businesses, significant habitat areas and critical infrastructure by:
 - Establishing multiple lines of defense against coastal flooding
 - Lowering nationally significant coastal and riverine flood and seismic vulnerabilities
 - Improving emergency response connectivity and disaster recovery time

\$187M 9-year program (\$76.6M federal contribution)

Surrey-Delta-Semiahmoo First Nation DMAF Funding

Total Estimated Funding \$187,000,000

Return on Investment

- Nationally significant infrastructure is protected
- Avoided damages calculated over life of assets
- Benefit to Cost ratio 126:1

Shovel-Ready Projects

- City of Surrey
 - Colebrook Dyke Upgrades
 - Stewart Pump Station
 - Burrows Pump Station
 - Southern Railway of BC Serpentine Bridge
- City of Delta
 - Boundary BayDyke Upgrades

High Priority Projects

- Nicomekl King George Blvd Bridge
- Nicomekl Riverfront Park
- 152nd St Raising and Widening
- Colebrook Pump Station

- Foreshore protection
- Nature-based solution for coastal squeeze and coastal flooding

A COMMUNITY LED, BOTTOM UP APPROACH IDENTIFIED THE VALUES TO PROTECT IN A CHANGING CLIMATE

Communities

Ongoing Adaptation

- New data or changes in the data such as acceleration in sea level rise
- New policies/directives global, national, provincial, regional, and local
- New participants and collaborations – new partners and actions taken by stakeholders
- New funding and the requirements/opportunities that come with them
- Extreme Events occurrence of an extreme coastal flood or other disasters

Lessons Learned

- No adaptation is NOT an option
- There's no silver bullet
- All strategic directions involve trade-offs
- Start with "no-regret" Actions that address pressing issues
- Engagement and partnerships are key
- Recognize the challenge
- Be adaptive

Learn More

- 1) Engineers Canada Sustainability in Practice Course
 - SDES 101–Polytechnique Montréal https://catalogue.edulib.org/en/courses/polymtl-sdes101/
 - Next intake expected Spring 2020
- 2) Adaptation Canada 2020
 - Collaboration through Cost Sharing workshop
 - February 17, 18 2020
 - www.AdaptationCanada.ca
- 3) CFAS Planning
 - www.surrey.ca/Coastal
- 4) CFAS Implementation
 - www.surrey.ca/CoastalTakingAction